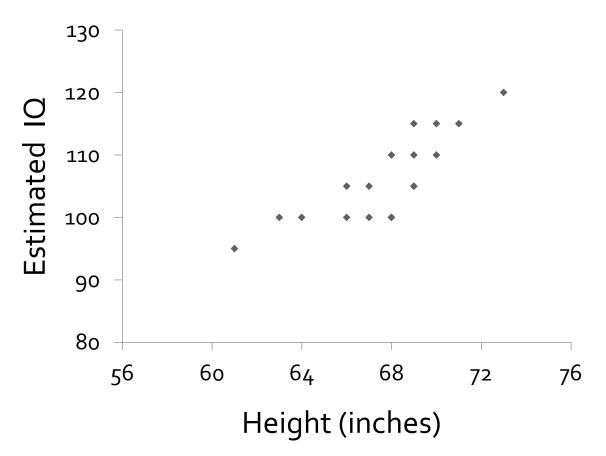

look at correlations using a "scatterplot"



only linear relationships are measured

- can be calculated between any two variables
- provide a measure of the linear relationship (only)
 symbol: r name: "correlation coefficient"
 - varies between -1.00 and +1.00
- also provide a measure of how much of the variance in one variable is "explained" by the other variable
 - symbol: r² name: "coefficient of determination"
 - varies between 0.00 and 1.00
- are greatly affected by the range of values

are greatly affected by the range of values

two more cool things about correlations

- correlations are unaffected by linear transformations
 - e.g., assume that the correlation between height in inches and estimated IQ is +.70
 - if you switch to metric units (inches→centimeters) then the variance increases by a factor of 6.45
 - but the correlation remains exactly the same

two more cool things about correlations

- correlations have no units
 - therefore, any two correlations may be compared
 - e.g., assume you want to know which confound in the original diffusion of responsibility study is more important: density or diversity
 - you can't compare density (people / foot²) directly to diversity (bits) because the units don't match
 - but you can compare the correlations (what you're really doing is comparing amounts of variance)

Reliability vs "Unreliability"

. .

.

		subjects					
		1	2	3	4	5	N
repeated measures	Ч	#	#	#	#	#	#
	2	#	#	#	#	#	#
	m	#	#	#	#	#	#
	4	#	#	#	#	#	#
	: ×	#	#	#	#	#	#

Reliability

why do most researchers prefer to use reliability, instead of something like unreliability, to estimate the quality of a measure?

answers:

general rule in psychology: